# Parity of Selmer ranks in quadratic twist families 

Adam Morgan

King's College London<br>adam.morgan@kcl.ac.uk

September 7, 2017

## Families of quadratic twists

Let $E / \mathbb{Q}$ be an elliptic curve, say with Weierstrass equation

$$
E: y^{2}=x^{3}+A x+B
$$

for $A, B \in \mathbb{Q}$.

## Families of quadratic twists

Let $E / \mathbb{Q}$ be an elliptic curve, say with Weierstrass equation

$$
E: y^{2}=x^{3}+A x+B
$$

for $A, B \in \mathbb{Q}$.
For a squarefree integer $d$ we can construct another elliptic curve $E_{d} / \mathbb{Q}$, the quadratic twist of $E$ by $d$ :

$$
E_{d}: d y^{2}=x^{3}+A x+B
$$

## Families of quadratic twists

Let $E / \mathbb{Q}$ be an elliptic curve, say with Weierstrass equation

$$
E: y^{2}=x^{3}+A x+B
$$

for $A, B \in \mathbb{Q}$.
For a squarefree integer $d$ we can construct another elliptic curve $E_{d} / \mathbb{Q}$, the quadratic twist of $E$ by $d$ :

$$
E_{d}: d y^{2}=x^{3}+A x+B
$$

This becomes isomorphic to $E$ over $\mathbb{Q}(\sqrt{d})$ be is (in general) not isomorphic to $E$ over $\mathbb{Q}$ and gives a convenient family of elliptic curves in which to ask statistical questions.

## Families of quadratic twists (cont.)

In general, let $K$ be any number field and $A / K$ an abelian variety.

## Families of quadratic twists (cont.)

In general, let $K$ be any number field and $A / K$ an abelian variety. Write $\mathcal{C}(K)$ for the group of quadratic characters of $K$ :

$$
\mathcal{C}(K):=\operatorname{Hom}_{\mathrm{cts}}(\operatorname{Gal}(\bar{K} / K),\{ \pm 1\}) .
$$

## Families of quadratic twists (cont.)

In general, let $K$ be any number field and $A / K$ an abelian variety. Write $\mathcal{C}(K)$ for the group of quadratic characters of $K$ :

$$
\mathcal{C}(K):=\operatorname{Hom}_{\mathrm{cts}}(\operatorname{Gal}(\bar{K} / K),\{ \pm 1\}) .
$$

For each $\chi \in \mathcal{C}(K)$ we have an abelian variety $A^{\chi} / K$, the quadratic twist of $A$ by $\chi$.

## Families of quadratic twists (cont.)

In general, let $K$ be any number field and $A / K$ an abelian variety. Write $\mathcal{C}(K)$ for the group of quadratic characters of $K$ :

$$
\mathcal{C}(K):=\operatorname{Hom}_{\mathrm{cts}}(\operatorname{Gal}(\bar{K} / K),\{ \pm 1\})
$$

For each $\chi \in \mathcal{C}(K)$ we have an abelian variety $A^{\chi} / K$, the quadratic twist of $A$ by $\chi$.
Ordering twists: For each $X>0$, let $\mathcal{C}(K, X)$ be the subgroup
$\mathcal{C}(K, X)=\{\chi \in \mathcal{C}(K) \mid N(\mathfrak{p})<X$ for all primes $\mathfrak{p}$ at which $\chi$ ramifies $\}$.

## Families of quadratic twists (cont.)

In general, let $K$ be any number field and $A / K$ an abelian variety. Write $\mathcal{C}(K)$ for the group of quadratic characters of $K$ :

$$
\mathcal{C}(K):=\operatorname{Hom}_{\mathrm{cts}}(\operatorname{Gal}(\bar{K} / K),\{ \pm 1\}) .
$$

For each $\chi \in \mathcal{C}(K)$ we have an abelian variety $A^{\chi} / K$, the quadratic twist of $A$ by $\chi$.
Ordering twists: For each $X>0$, let $\mathcal{C}(K, X)$ be the subgroup

$$
\mathcal{C}(K, X)=\{\chi \in \mathcal{C}(K) \mid N(\mathfrak{p})<X \text { for all primes } \mathfrak{p} \text { at which } \chi \text { ramifies }\}
$$

For each $X$, this is a finite subgroup of $\mathcal{C}(K)$.

## A result of Klagsbrun-Mazur-Rubin

Our starting point is the following theorem:
Theorem (Klagsbrun-Mazur-Rubin)
Let $E / K$ be an elliptic curve.

## A result of Klagsbrun-Mazur-Rubin

Our starting point is the following theorem:

## Theorem (Klagsbrun-Mazur-Rubin)

Let $E / K$ be an elliptic curve. Then for all $X$ sufficiently large, we have

$$
\frac{\mid\left\{\chi \in \mathcal{C}(K, X): \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(E^{\chi} / K\right) \text { is even }\right\} \mid}{|\mathcal{C}(K, X)|}=
$$

## A result of Klagsbrun-Mazur-Rubin

Our starting point is the following theorem:

## Theorem (Klagsbrun-Mazur-Rubin)

Let $E / K$ be an elliptic curve. Then for all $X$ sufficiently large, we have

$$
\frac{\mid\left\{\chi \in \mathcal{C}(K, X): \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(E^{\chi} / K\right) \text { is even }\right\} \mid}{|\mathcal{C}(K, X)|}=\frac{1+\delta}{2}
$$

where $\delta$ is a finite product of explicit local terms $\delta_{v}$ (which are equal to 1 for $\left.v \nmid 2 \Delta_{E} \infty\right)$.

## A result of Klagsbrun-Mazur-Rubin

Our starting point is the following theorem:

## Theorem (Klagsbrun-Mazur-Rubin)

Let $E / K$ be an elliptic curve. Then for all $X$ sufficiently large, we have

$$
\frac{\mid\left\{\chi \in \mathcal{C}(K, X): \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(E^{\chi} / K\right) \text { is even }\right\} \mid}{|\mathcal{C}(K, X)|}=\frac{1+\delta}{2}
$$

where $\delta$ is a finite product of explicit local terms $\delta_{v}$ (which are equal to 1 for $\left.v \nmid 2 \Delta_{E} \infty\right)$.

- Over $\mathbb{Q}$ we always have $\delta=0$ but in general $\delta$ is non-zero.


## A result of Klagsbrun-Mazur-Rubin

Our starting point is the following theorem:

## Theorem (Klagsbrun-Mazur-Rubin)

Let $E / K$ be an elliptic curve. Then for all $X$ sufficiently large, we have

$$
\frac{\mid\left\{\chi \in \mathcal{C}(K, X): \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(E^{\chi} / K\right) \text { is even }\right\} \mid}{|\mathcal{C}(K, X)|}=\frac{1+\delta}{2}
$$

where $\delta$ is a finite product of explicit local terms $\delta_{v}$ (which are equal to 1 for $\left.v \nmid 2 \Delta_{E} \infty\right)$.

- Over $\mathbb{Q}$ we always have $\delta=0$ but in general $\delta$ is non-zero.
- Generalized to Jacobians of odd degree hyperelliptic curves by Yu.


## A result of Klagsbrun-Mazur-Rubin

Our starting point is the following theorem:

## Theorem (Klagsbrun-Mazur-Rubin)

Let $E / K$ be an elliptic curve. Then for all $X$ sufficiently large, we have

$$
\frac{\mid\left\{\chi \in \mathcal{C}(K, X): \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(E^{\chi} / K\right) \text { is even }\right\} \mid}{|\mathcal{C}(K, X)|}=\frac{1+\delta}{2}
$$

where $\delta$ is a finite product of explicit local terms $\delta_{v}$ (which are equal to 1 for $\left.v \nmid 2 \Delta_{E} \infty\right)$.

- Over $\mathbb{Q}$ we always have $\delta=0$ but in general $\delta$ is non-zero.
- Generalized to Jacobians of odd degree hyperelliptic curves by Yu.
- Predicted by (and consistent with) root number considerations.


## General principally polarised abelian varieties

A/K principally polarised abelian variety (e.g. Jacobian).
We have
$\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}(A / K)=\operatorname{dim}_{\mathbb{F}_{2}} A(K)[2]+\operatorname{rk}_{2}(A / K)+\operatorname{dim}_{\mathbb{F}_{2}} \amalg_{\mathrm{nd}}(A / K)[2]$.

## General principally polarised abelian varieties

A/K principally polarised abelian variety (e.g. Jacobian).
We have

$$
\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}(A / K)=\operatorname{dim}_{\mathbb{F}_{2}} A(K)[2]+\operatorname{rk}_{2}(A / K)+\operatorname{dim}_{\mathbb{F}_{2}} \amalg_{\mathrm{nd}}(A / K)[2] .
$$

Here $\mathrm{rk}_{2}(A / K)$ is the 2-infinity Selmer rank of $A / K$ (conjecturally equal to the rank)

## General principally polarised abelian varieties

A/K principally polarised abelian variety (e.g. Jacobian).
We have

$$
\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}(A / K)=\operatorname{dim}_{\mathbb{F}_{2}} A(K)[2]+\mathrm{rk}_{2}(A / K)+\operatorname{dim}_{\mathbb{F}_{2}} \amalg_{\mathrm{nd}}(A / K)[2] .
$$

Here $\mathrm{rk}_{2}(A / K)$ is the 2 -infinity Selmer rank of $A / K$ (conjecturally equal to the rank) and $\amalg_{n d}(A / K)[2]$ is the quotient of $\amalg(A / K)$ by its (conjecturally trivial) maximal divisible subgroup. Poonen and Stoll showed that in general $\amalg(A / K)[2]$ does not have to be even!

## General principally polarised abelian varieties

A/K principally polarised abelian variety (e.g. Jacobian).
We have

$$
\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}(A / K)=\operatorname{dim}_{\mathbb{F}_{2}} A(K)[2]+\mathrm{rk}_{2}(A / K)+\operatorname{dim}_{\mathbb{F}_{2}} \amalg_{\mathrm{nd}}(A / K)[2] .
$$

Here $\mathrm{rk}_{2}(A / K)$ is the 2 -infinity Selmer rank of $A / K$ (conjecturally equal to the rank) and $\amalg_{n d}(A / K)[2]$ is the quotient of $\amalg(A / K)$ by its (conjecturally trivial) maximal divisible subgroup. Poonen and Stoll showed that in general $\amalg(A / K)[2]$ does not have to be even!

Conclusion: We now have two questions:

## General principally polarised abelian varieties

A/K principally polarised abelian variety (e.g. Jacobian).
We have

$$
\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}(A / K)=\operatorname{dim}_{\mathbb{F}_{2}} A(K)[2]+\mathrm{rk}_{2}(A / K)+\operatorname{dim}_{\mathbb{F}_{2}} \amalg_{\mathrm{nd}}(A / K)[2] .
$$

Here $\mathrm{rk}_{2}(A / K)$ is the 2 -infinity Selmer rank of $A / K$ (conjecturally equal to the rank) and $\amalg_{n d}(A / K)[2]$ is the quotient of $\amalg(A / K)$ by its (conjecturally trivial) maximal divisible subgroup. Poonen and Stoll showed that in general $\amalg(A / K)[2]$ does not have to be even!

Conclusion: We now have two questions:

- How do the parities of ranks behave in quadratic twist families?


## General principally polarised abelian varieties

A/K principally polarised abelian variety (e.g. Jacobian).
We have

$$
\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}(A / K)=\operatorname{dim}_{\mathbb{F}_{2}} A(K)[2]+\mathrm{rk}_{2}(A / K)+\operatorname{dim}_{\mathbb{F}_{2}} \amalg_{\mathrm{nd}}(A / K)[2] .
$$

Here $\mathrm{rk}_{2}(A / K)$ is the 2-infinity Selmer rank of $A / K$ (conjecturally equal to the rank) and $\amalg_{n d}(A / K)[2]$ is the quotient of $\amalg(A / K)$ by its (conjecturally trivial) maximal divisible subgroup. Poonen and Stoll showed that in general $\amalg(A / K)[2]$ does not have to be even!

Conclusion: We now have two questions:

- How do the parities of ranks behave in quadratic twist families?
- How do parities of 2-Selmer ranks behave in quadratic twist families?


## Parity of 2-infinity Selmer ranks

## Theorem (M.)

Let $A / K$ be a principally polarised abelian variety.

## Parity of 2-infinity Selmer ranks

## Theorem (M.)

Let $A / K$ be a principally polarised abelian variety. Then

$$
\operatorname{Prob}\left(\mathrm{rk}_{2}\left(A^{\chi} / K\right) \text { is even }\right)=\frac{1+\delta}{2}
$$

where $\delta$ is a finite product of explicit local terms $\delta_{v}$.

## Parity of 2-infinity Selmer ranks

## Theorem (M.)

Let $A / K$ be a principally polarised abelian variety. Then

$$
\operatorname{Prob}\left(\mathrm{rk}_{2}\left(A^{\chi} / K\right) \text { is even }\right)=\frac{1+\delta}{2}
$$

where $\delta$ is a finite product of explicit local terms $\delta_{v}$.

If $K=\mathbb{Q}$ and $\operatorname{dim} A$ is odd then $\delta=0$ but for $\operatorname{dim} A$ even this need not be the case (c.f. example of Yu.).

## Parity of 2-Selmer ranks

## Theorem (M.)

Let $A / K$ be a principally polarised abelian variety and let $\epsilon: \operatorname{Gal}(K(A[2]) / K) \rightarrow\{ \pm 1\}$ be the $m a p \sigma \mapsto(-1)^{\operatorname{dim}_{\mathbb{F}_{2}} A[2]^{\sigma}}$.

## Parity of 2-Selmer ranks

## Theorem (M.)

Let $A / K$ be a principally polarised abelian variety and let $\epsilon: \operatorname{Gal}(K(A[2]) / K) \rightarrow\{ \pm 1\}$ be the $m a p \sigma \mapsto(-1)^{\operatorname{dim}_{\mathbb{F}_{2}} A[2]^{\sigma}}$.

- If $\epsilon$ is a homomorphism then

$$
\operatorname{Prob}\left(\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(A^{\chi} / K\right) \text { is even }\right)=\frac{1+\rho}{2}
$$

where $\rho$ is a finite product of explicit local terms $\rho_{v}$.

## Parity of 2-Selmer ranks

## Theorem (M.)

Let $A / K$ be a principally polarised abelian variety and let $\epsilon: \operatorname{Gal}(K(A[2]) / K) \rightarrow\{ \pm 1\}$ be the $m a p \sigma \mapsto(-1)^{\operatorname{dim}_{\mathbb{F}_{2}} A[2]^{\sigma}}$.

- If $\epsilon$ is a homomorphism then

$$
\operatorname{Prob}\left(\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(A^{\chi} / K\right) \text { is even }\right)=\frac{1+\rho}{2}
$$

where $\rho$ is a finite product of explicit local terms $\rho_{v}$.

- If $\epsilon$ fails to be a homomorphism then

$$
\operatorname{Prob}\left(\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(A^{\chi} / K\right) \text { is even }\right)=1 / 2
$$

## Remarks

## Remarks

- If $A$ is the Jacobian of an odd degree hyperelliptic curve $C: y^{2}=f(x)$ then $\epsilon$ is the homomorphism


## Remarks

- If $A$ is the Jacobian of an odd degree hyperelliptic curve $C: y^{2}=f(x)$ then $\epsilon$ is the homomorphism

$$
\epsilon: \operatorname{Gal}(f) \rightarrow S_{\operatorname{deg}(f)} \xrightarrow{\text { sign }}\{ \pm 1\} .
$$

## Remarks

- If $A$ is the Jacobian of an odd degree hyperelliptic curve $C: y^{2}=f(x)$ then $\epsilon$ is the homomorphism

$$
\epsilon: \operatorname{Gal}(f) \rightarrow S_{\operatorname{deg}(f)} \xrightarrow{\operatorname{sign}}\{ \pm 1\} .
$$

- However, if $A$ is the Jacobian of an even degree hyperelliptic curve $C: y^{2}=f(x)$ with $\operatorname{Gal}(f) \cong S_{\operatorname{deg} f}$ or $\operatorname{Gal}(f) \cong A_{\operatorname{deg} f}$ then $\epsilon$ is not a homomorphism.


## Remarks

- If $A$ is the Jacobian of an odd degree hyperelliptic curve $C: y^{2}=f(x)$ then $\epsilon$ is the homomorphism

$$
\epsilon: \operatorname{Gal}(f) \rightarrow S_{\operatorname{deg}(f)} \xrightarrow{\text { sign }}\{ \pm 1\} .
$$

- However, if $A$ is the Jacobian of an even degree hyperelliptic curve $C: y^{2}=f(x)$ with $\operatorname{Gal}(f) \cong S_{\operatorname{deg} f}$ or $\operatorname{Gal}(f) \cong A_{\operatorname{deg} f}$ then $\epsilon$ is not a homomorphism.
- If we have $\operatorname{Gal}(K(A[2]) / K) \cong \operatorname{Sp}_{2 \operatorname{dim} A}\left(\mathbb{F}_{2}\right)$ and $\operatorname{dim} A \geq 2$, then again $\epsilon$ is not a homomorphism.


## An example

Let $J / \mathbb{Q}$ be the Jacobian of the genus 2 hyperelliptic curve

$$
C: y^{2}=f(x)=x^{6}+x^{4}+x+3
$$

## An example

Let $J / \mathbb{Q}$ be the Jacobian of the genus 2 hyperelliptic curve

$$
C: y^{2}=f(x)=x^{6}+x^{4}+x+3
$$

Then $\epsilon$ is not a homomorphism $\left(\operatorname{Gal}(f) \cong S_{6}\right)$ so

## An example

Let $J / \mathbb{Q}$ be the Jacobian of the genus 2 hyperelliptic curve

$$
C: y^{2}=f(x)=x^{6}+x^{4}+x+3
$$

Then $\epsilon$ is not a homomorphism $\left(\operatorname{Gal}(f) \cong S_{6}\right)$ so

$$
\operatorname{Prob}\left(\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(J^{\chi} / \mathbb{Q}\right) \text { is even }\right)=1 / 2
$$

## An example

Let $J / \mathbb{Q}$ be the Jacobian of the genus 2 hyperelliptic curve

$$
C: y^{2}=f(x)=x^{6}+x^{4}+x+3
$$

Then $\epsilon$ is not a homomorphism $\left(\operatorname{Gal}(f) \cong S_{6}\right)$ so

$$
\operatorname{Prob}\left(\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(J^{\chi} / \mathbb{Q}\right) \text { is even }\right)=1 / 2
$$

On the other hand, $J$ has $\delta=\frac{3}{16}$ and odd $2^{\infty}$-Selmer rank, so

$$
\operatorname{Prob}\left(\mathrm{rk}_{2}\left(J^{\chi} / \mathbb{Q}\right) \text { is even }\right)=\frac{19}{32}
$$

## Comparing 2-Selmer ranks modulo 2

Exploiting the isomorphism $A[2] \cong A^{\chi}[2]$ to view both $\operatorname{Sel}_{2}(A / K)$ and $\mathrm{Sel}_{2}\left(A^{\chi} / K\right)$ inside $H^{1}(K, A[2])$ yields

## Comparing 2-Selmer ranks modulo 2

Exploiting the isomorphism $A[2] \cong A^{\chi}[2]$ to view both $\operatorname{Sel}_{2}(A / K)$ and $\mathrm{Sel}_{2}\left(A^{\chi} / K\right)$ inside $H^{1}(K, A[2])$ yields

## Lemma

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(A^{\chi} / K\right) \equiv \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}(A / K)+\sum_{v \in \Sigma} \kappa_{v}\left(\chi_{v}\right) \\
& \\
& \quad+\sum_{v \notin \Sigma, \chi \text { ramified at } v} \operatorname{dim}_{\mathbb{F}_{2}} A[2]^{\text {frob }} \quad(\bmod 2)
\end{aligned}
$$

where $\Sigma$ is the finite set of places containing those dividing $2 \infty$ and those where $A$ has bad reduction, and the $\kappa_{v}\left(\chi_{v}\right)$ are explicit constants.

## Comparing 2-Selmer ranks modulo 2

Exploiting the isomorphism $A[2] \cong A^{\chi}[2]$ to view both $\operatorname{Sel}_{2}(A / K)$ and $\mathrm{Sel}_{2}\left(A^{\chi} / K\right)$ inside $H^{1}(K, A[2])$ yields

## Lemma

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}\left(A^{\chi} / K\right) \equiv \operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}(A / K)+\sum_{v \in \Sigma} \kappa_{v}\left(\chi_{v}\right) \\
& \\
& \quad+\sum_{v \notin \Sigma, \chi \text { ramified at } v} \operatorname{dim}_{\mathbb{F}_{2}} A[2]^{\text {frob }} \quad(\bmod 2)
\end{aligned}
$$

where $\Sigma$ is the finite set of places containing those dividing $2 \infty$ and those where $A$ has bad reduction, and the $\kappa_{v}\left(\chi_{v}\right)$ are explicit constants.

## Controlling non-square Sha under quadratic twist

To understand how $2^{\infty}$-Selmer ranks behave in quadratic twist families it remains to understand how $\operatorname{dim}_{\mathbb{F}_{2}} Ш_{n d}(A / K)[2]$ behaves under quadratic twist.

## Controlling non-square Sha under quadratic twist

To understand how $2^{\infty}$-Selmer ranks behave in quadratic twist families it remains to understand how $\operatorname{dim}_{\mathbb{F}_{2}} Ш_{n d}(A / K)[2]$ behaves under quadratic twist.

## Theorem

Let $A / K$ be a principally polarised abelian variety and $\chi \in \mathcal{C}(K)$ a quadratic character.

## Controlling non-square Sha under quadratic twist

To understand how $2^{\infty}$-Selmer ranks behave in quadratic twist families it remains to understand how $\operatorname{dim}_{\mathbb{F}_{2}} Ш_{n d}(A / K)[2]$ behaves under quadratic twist.

## Theorem

Let $A / K$ be a principally polarised abelian variety and $\chi \in \mathcal{C}(K)$ a quadratic character. Then there are explicit local constants $\gamma_{v}\left(\chi_{v}\right)$ such that

$$
\operatorname{dim}_{\mathbb{F}_{2}} Ш_{n d}\left(A^{\chi} / K\right)[2] \equiv \operatorname{dim}_{\mathbb{F}_{2}} Ш_{n d}(A / K)[2]+\sum_{v} \gamma_{v}\left(\chi_{v}\right) \quad(\bmod 2) .
$$

## Controlling non-square Sha under quadratic twist

To understand how $2^{\infty}$-Selmer ranks behave in quadratic twist families it remains to understand how $\operatorname{dim}_{\mathbb{F}_{2}} Ш_{n d}(A / K)[2]$ behaves under quadratic twist.

## Theorem

Let $A / K$ be a principally polarised abelian variety and $\chi \in \mathcal{C}(K)$ a quadratic character. Then there are explicit local constants $\gamma_{v}\left(\chi_{v}\right)$ such that

$$
\operatorname{dim}_{\mathbb{F}_{2}} \amalg_{\mathrm{nd}}\left(A^{\chi} / K\right)[2] \equiv \operatorname{dim}_{\mathbb{F}_{2}} \amalg_{\mathrm{nd}}(A / K)[2]+\sum_{v} \gamma_{v}\left(\chi_{v}\right) \quad(\bmod 2) .
$$

When $v \nmid 2 \infty$ and $A$ has good reduction at $v$ then

$$
\gamma_{v}\left(\chi_{v}\right)= \begin{cases}\operatorname{dim}_{\mathbb{F}_{2}} A[2]^{\text {frob }}{ }_{v} & \chi_{v} \text { is ramified } \\ 0 & \text { otherwise }\end{cases}
$$

## Thank you for your attention!

